Active Ranking using Pairwise Comparisons

نویسندگان

  • Kevin G. Jamieson
  • Robert D. Nowak
چکیده

This paper examines the problem of ranking a collection of objects using pairwise comparisons (rankings of two objects). In general, the ranking of n objects can be identified by standard sorting methods using n log2 n pairwise comparisons. We are interested in natural situations in which relationships among the objects may allow for ranking using far fewer pairwise comparisons. Specifically, we assume that the objects can be embedded into a d-dimensional Euclidean space and that the rankings reflect their relative distances from a common reference point in R. We show that under this assumption the number of possible rankings grows like n and demonstrate an algorithm that can identify a randomly selected ranking using just slightly more than d log n adaptively selected pairwise comparisons, on average. If instead the comparisons are chosen at random, then almost all pairwise comparisons must be made in order to identify any ranking. In addition, we propose a robust, error-tolerant algorithm that only requires that the pairwise comparisons are probably correct. Experimental studies with synthetic and real datasets support the conclusions of our theoretical analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Active Ranking from Pairwise Comparisons and when Parametric Assumptions Don't Help

We consider sequential or active ranking of a set of n items based on noisy pairwise comparisons. Items are ranked according to the probability that a given item beats a randomly chosen item, and ranking refers to partitioning the items into sets of pre-specified sizes according to their scores. This notion of ranking includes as special cases the identification of the top-k items and the total...

متن کامل

Passive and Active Ranking from Pairwise Comparisons

In the problem of ranking from pairwise comparisons, the learner has access to pairwise preferences among n objects and is expected to output a total order of these objects. This problem has a wide range of applications not only in computer science but also in other areas such as social science and economics. In this report, we will give a survey of passive and active learning algorithms for ra...

متن کامل

Approximate Ranking from Pairwise Comparisons

A common problem in machine learning is to rank a set of n items based on pairwise comparisons. Here ranking refers to partitioning the items into sets of pre-specified sizes according to their scores, which includes identification of the top-k items as the most prominent special case. The score of a given item is defined as the probability that it beats a randomly chosen other item. Finding an...

متن کامل

When can we rank well from comparisons of \(O(n\log(n))\) non-actively chosen pairs?

Ranking from pairwise comparisons is a ubiquitous problem and has been studied in disciplines ranging from statistics to operations research and from theoretical computer science to machine learning. Here we consider a general setting where outcomes of pairwise comparisons between items i and j are drawn probabilistically by flipping a coin with unknown bias Pij , and ask under what conditions ...

متن کامل

The separation, and separation-deviation methodology for group decision making and aggregate Ranking

In a generic group decision scenario, the decision makers review alternatives and then provide their own individual ranking. The aggregate ranking problem is to obtain a ranking that is fair and representative of the individual rankings. We argue here that using cardinal pairwise comparisons provides several advantages over score-wise models. The aggregate group ranking problem is then formaliz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011